Известны ежемесячные продажи австралийского вина в тысячах литров с января 1980 по июль 1995, необходимо построить прогноз на следующие три года.
In [1]:
%pylab inline
import pandas as pd
from scipy import stats
import statsmodels.api as sm
import matplotlib.pyplot as plt
import warnings
from itertools import product
def invboxcox(y,lmbda):
if lmbda == 0:
return(np.exp(y))
else:
return(np.exp(np.log(lmbda*y+1)/lmbda))
In [2]:
wine = pd.read_csv('monthly-australian-wine-sales.csv',',', index_col=['month'], parse_dates=['month'], dayfirst=True)
wine.sales = wine.sales * 1000
plt.figure(figsize(15,7))
wine.sales.plot()
plt.ylabel('Wine sales')
pylab.show()
Проверка стационарности и STL-декомпозиция ряда:
In [3]:
plt.figure(figsize(15,10))
sm.tsa.seasonal_decompose(wine.sales).plot()
print("Критерий Дики-Фуллера: p=%f" % sm.tsa.stattools.adfuller(wine.sales)[1])
Сделаем преобразование Бокса-Кокса для стабилизации дисперсии:
In [4]:
wine['sales_box'], lmbda = stats.boxcox(wine.sales)
plt.figure(figsize(15,7))
wine.sales_box.plot()
plt.ylabel(u'Transformed wine sales')
print("Оптимальный параметр преобразования Бокса-Кокса: %f" % lmbda)
print("Критерий Дики-Фуллера: p=%f" % sm.tsa.stattools.adfuller(wine.sales_box)[1])
Критерий Дики-Фуллера отвергает гипотезу нестационарности, но визуально в данных виден тренд. Попробуем сезонное дифференцирование; сделаем на продифференцированном ряде STL-декомпозицию и проверим стационарность:
In [5]:
wine['sales_box_diff'] = wine.sales_box - wine.sales_box.shift(12)
plt.figure(figsize(15,10))
sm.tsa.seasonal_decompose(wine.sales_box_diff[12:]).plot()
print("Критерий Дики-Фуллера: p=%f" % sm.tsa.stattools.adfuller(wine.sales_box_diff[12:])[1])
Критерий Дики-Фуллера не отвергает гипотезу нестационарности, и полностью избавиться от тренда не удалось. Попробуем добавить ещё обычное дифференцирование:
In [6]:
wine['sales_box_diff2'] = wine.sales_box_diff - wine.sales_box_diff.shift(1)
plt.figure(figsize(15,10))
sm.tsa.seasonal_decompose(wine.sales_box_diff2[13:]).plot()
print("Критерий Дики-Фуллера: p=%f" % sm.tsa.stattools.adfuller(wine.sales_box_diff2[13:])[1])
Гипотеза нестационарности отвергается, и визуально ряд выглядит лучше — тренда больше нет.
Посмотрим на ACF и PACF полученного ряда:
In [7]:
plt.figure(figsize(15,8))
ax = plt.subplot(211)
sm.graphics.tsa.plot_acf(wine.sales_box_diff2[13:].values.squeeze(), lags=48, ax=ax)
pylab.show()
ax = plt.subplot(212)
sm.graphics.tsa.plot_pacf(wine.sales_box_diff2[13:].values.squeeze(), lags=48, ax=ax)
pylab.show()
Начальные приближения: Q=1, q=2, P=1, p=4
In [8]:
ps = range(0, 5)
d=1
qs = range(0, 3)
Ps = range(0, 2)
D=1
Qs = range(0, 2)
In [9]:
parameters = product(ps, qs, Ps, Qs)
parameters_list = list(parameters)
len(parameters_list)
Out[9]:
In [10]:
%%time
results = []
best_aic = float("inf")
warnings.filterwarnings('ignore')
for param in parameters_list:
#try except нужен, потому что на некоторых наборах параметров модель не обучается
try:
model=sm.tsa.statespace.SARIMAX(wine.sales_box, order=(param[0], d, param[1]),
seasonal_order=(param[2], D, param[3], 12)).fit(disp=-1)
#выводим параметры, на которых модель не обучается и переходим к следующему набору
except ValueError:
print('wrong parameters:', param)
continue
aic = model.aic
#сохраняем лучшую модель, aic, параметры
if aic < best_aic:
best_model = model
best_aic = aic
best_param = param
results.append([param, model.aic])
warnings.filterwarnings('default')
Если в предыдущей ячейке возникает ошибка, убедитесь, что обновили statsmodels до версии не меньше 0.8.0rc1.
In [11]:
result_table = pd.DataFrame(results)
result_table.columns = ['parameters', 'aic']
print(result_table.sort_values(by = 'aic', ascending=True).head())
Лучшая модель:
In [12]:
print(best_model.summary())
Её остатки:
In [13]:
plt.figure(figsize(15,8))
plt.subplot(211)
best_model.resid[13:].plot()
plt.ylabel(u'Residuals')
ax = plt.subplot(212)
sm.graphics.tsa.plot_acf(best_model.resid[13:].values.squeeze(), lags=48, ax=ax)
print("Критерий Стьюдента: p=%f" % stats.ttest_1samp(best_model.resid[13:], 0)[1])
print("Критерий Дики-Фуллера: p=%f" % sm.tsa.stattools.adfuller(best_model.resid[13:])[1])
Остатки несмещены (подтверждается критерием Стьюдента) стационарны (подтверждается критерием Дики-Фуллера и визуально), неавтокоррелированы (подтверждается критерием Льюнга-Бокса и коррелограммой). Посмотрим, насколько хорошо модель описывает данные:
In [14]:
wine['model'] = invboxcox(best_model.fittedvalues, lmbda)
plt.figure(figsize(15,7))
wine.sales.plot()
wine.model[13:].plot(color='r')
plt.ylabel('Wine sales')
pylab.show()
In [15]:
wine2 = wine[['sales']]
date_list = [datetime.datetime.strptime("1994-09-01", "%Y-%m-%d") + relativedelta(months=x) for x in range(0,36)]
future = pd.DataFrame(index=date_list, columns= wine2.columns)
wine2 = pd.concat([wine2, future])
wine2['forecast'] = invboxcox(best_model.predict(start=176, end=211), lmbda)
plt.figure(figsize(15,7))
wine2.sales.plot()
wine2.forecast.plot(color='r')
plt.ylabel('Wine sales')
pylab.show()